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In this paper, we review recent advances in piezoresponse force microscopy (PFM) with respect
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1. Introduction
Rapid development of electronic devices based on ferro-
electric thin films has necessitated studies of ferroelectric
properties at the nanoscale. Fortunately, this need came at
the time when new techniques for nanoscale characteri-
zation of materials became available. Scanning probe mi-
croscopy (SPM) has emerged as a powerful tool for high-
resolution characterization of virtually all types of mate-
rials, including metals, semiconductors, dielectrics, poly-
mers and biomolecules. A number of papers and books on
scanning probe methods have been published, providing
an introduction to the basic SPM principles and advanced
applications [1–5]. SPM techniques have revolutionized
the field of ferroelectricity, for the first time providing
an opportunity for nondestructive visualization of domain
structures in ferroelectric thin films at the nanoscale. SPM
made possible nanoscale mapping of the surface potential,
evaluation of local electromechanical properties and non-
linear dielectric constant measurements, i.e. it provides
crucial information on the ferroelectric materials proper-
ties with unprecedented spatial resolution. SPM has also
opened new venues in nanoscale domain patterning for
such applications as high-density data storage [6, 7] and
ferroelectric lithography [8, 9]. Steadily increasing num-
ber of research papers indicates a growing importance
of SPM in the field of ferroelectricity (Fig. 1). Research
groups in US, Europe and Asia are actively using SPM for

high-resolution characterization of ferroelectric materials
both in bulk and thin layer forms [10].

Among the SPM techniques for the nanoscale char-
acterization of ferroelectrics, by far the most popular
one is piezoresponse force microscopy (PFM) [6–10].
In this paper, we review recent advances in PFM with
respect to nanoscale ferroelectric research, summarize
the basic principles of PFM, illustrate what information
can be obtained from PFM experiments and delineate
the limitations of PFM signal interpretation relevant to
quantitative imaging of a broad range of piezoelectrically
active materials.

2. Principle of piezoresponse force microscopy
Piezoresponse force microscopy is based on the detection
of local piezoelectric deformation of a ferroelectric sam-
ple induced by an external electric field (hence the name
“piezoresponse”). Depending on the relative orientations
of the applied field and the polarization vector, sample
deformation can be in the form of elongation, contrac-
tion or shear. For the converse piezoelectric effect, the
field-induced strain Sj can be expressed as [11]:

Sj = dij Ei (1)

where dij are components of the piezoelectric tensor (in
reduced Voigt notation) and Ei is the applied field.
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Figure 1 Number of publications on SPM studies of ferroelectrics per year.

Using the thermodynamic approach it can be shown
that in a single-domain ferroelectric the piezoelectric co-
efficient relates to the spontaneous polarization Ps via the
following expression [12, 13]:

di j = εim Q jmk Psk, (2)

where εim is the dielectric constant and Qjmk is the elec-
trostriction coefficient.

The linear coupling between the piezoelectric and fer-
roelectric parameters infers that the domain polarity can
be determined from the sign of the field-induced strain.
Application of the uniform electric field along the po-
lar direction results in the elongation of the domain with
polarization parallel to the applied field and in the con-
traction of the domain with opposite polarization. The
field-induced strain in this case can be written as:

S = �Z

Z
= ±d33 E (3)

where �Z is the sample deformation and Z is the sample
thickness. Equation 3 can be rewritten as:

�Z = ±d33V (4)

where V is an applied voltage. The ± sign reflects the
piezoelectric coefficients of opposite sign for antiparallel
domains. Thus, opposite domains can be visualized by
monitoring their voltage-induced surface displacement.

Due to its extremely high vertical sensitivity, nanoscale
topography variations can be routinely measured in SPM.
However, domain imaging based on detection of static
piezoelectric deformation is difficult to implement unless

a sample has a very smooth surface. The reason is simple:
the static cantilever deflection due to the piezoelectric de-
formation will be superimposed on the deflection signal
due to the surface roughness, which renders static piezore-
sponse domain imaging in samples with rough surfaces
highly problematical.

Based on Equation 4 one might conclude that the elec-
trically induced topographic contrast between opposite
domains can be infinitely enhanced by increasing the
imaging voltage. However, there is a strict limitation im-
posed on this parameter: to perform nondestructive visu-
alization of domain structure, the imaging voltage should
be kept below the coercive voltage of the ferroelectric
sample. In addition, a high imaging voltage will lead to
an increased contribution of the electrostatic signal to the
tip-sample interaction, which in some cases can obscure
the domain image. Given that a typical value of the coer-
cive field in a 200-nm-thick Pb(Zr, Ti)O3 ferroelectric film
is approximately 50 kV/cm, the imaging voltage should
not exceed 1 V, otherwise the imaging process will change
the domain structure by inducing the polarization rever-
sal. In a PZT film with the d33 constant of about 200 pm/N
the surface displacement induced by an external voltage
of 1 V will be only 0.2 nm. Obviously, such a displace-
ment could not be reliably detected in ferroelectric films,
where topographic features can be on the order of sev-
eral nanometers. The static approach can be applied in
some limited cases, for example, to ferroelectric samples
with carefully polished surfaces, relatively high values of
piezoelectric constants and coercive fields.

A problem of low sensitivity of a static piezoresponse
mode has been circumvented by employing a dynamic
piezoresponse imaging method based on the voltage-
modulation approach, which allowed sensitivity to be in-
creased by three orders of magnitude [14–17]. In this
approach, an ac modulation (imaging) voltage V = V0

cos ωt is applied to the ferroelectric sample and surface
displacement is measured using a standard lock-in tech-
nique by detecting the vertical vibration of the cantilever
(Fig. 2a), which follows sample surface oscillation. A do-
main map can be obtained by scanning the surface while
detecting the first harmonic component of the normal sur-
face vibration (vertical piezoresponse, or VPFM):

�Z = �Z0 cos(ωt + ϕ) (5)

where �Z0 = dvV0 is a vibration amplitude, dv is effec-
tive piezoelectric constant and ϕ is a phase difference
between the imaging voltage and piezoresponse, which
provides information on the polarization direction. With
the modulation voltage applied to the probing tip, positive
domains (polarization vector oriented downward) will vi-
brate in phase with the applied voltage so that ϕ(+) = 0◦,
while vibration of negative domains (polarization vector
oriented upward) will occur in counter phase: ϕ(−) =
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Figure 2 Schematics of the vertical (a) and lateral (b) PFM signal detection.

180◦. Note that while Equation 4 is rigorous for a uniform
field case, the field below the SPM tip is highly non-
uniform. The rigorous solution of this problem has been
given by Kalinin and Karapetian [18, 19] and it was shown
that for transversally isotropic materials (e.g. c domain in
tetragonal perovskite ferroelectrics, poled polymers, etc.)
dv ≈ d33, recovering the early assumptions in PFM data
interpretation [16].

It should be noted that despite apparent simplicity of the
PFM method, quantification of the PFM data, particularly
in the case of thin films, is nontrivial due to the complex-
ity of the tip-sample interaction which involves not only
electromechanical but also electrostatic components. Ex-
perimental conditions, such as driving voltage, frequency,
loading force, cantilever force constant, tip apex radius,
ambient environment, as well as physical properties of the
samples (thickness, dielectric constants, orientation, de-
fect structure, crystallinity, electrode material) should be
taken into account to avoid misinterpretation of the PFM
results [20]. However, qualitative PFM domain imaging
is extremely robust and currently PFM is one of the main
tools for high-resolution characterization of ferroelectric
crystals and thin films [21].

One of the significant features of the dynamic PFM
method is that it also allows delineation of domains with
polarization parallel to the sample surface (a-domains)
[22–24]. In lateral PFM (LPFM) [22], a-domains are visu-
alized by detecting the torsional vibration of the cantilever
(Fig. 2b). Application of the modulation voltage across the
sample generates sample vibration in the direction parallel
to its surface due to the piezoelectric shear deformation.
This surface vibration, translated via the friction forces to
the torsional movement of the cantilever, can be detected
in the same way as the normal cantilever oscillation in
vertical PFM. For the uniform field for a domain, the
amplitude of the in-plane oscillation is given by:

�X0 = d15V0 (6)

while polarization direction can be determined from
the phase signal since oscillation phases of opposite a-

domains differ by 180◦. It should be noted, however, that
quantification of the shear piezoelectric coefficients in
LPFM is a challenging problem that is complicated by
the tip-surface tribology, inhomogeneous field distribu-
tion and mechanical clamping effects.

Note that Equation 6 can be used only when the
in-plane polarization vector is perpendicular to the
physical axis of the cantilever. However, in general case
the in-plane electromechanical response vector can be
oriented arbitrarily with respect to the cantilever. To per-
form complete three-dimensional (3D) reconstruction of
polarization, an advanced approach – vector PFM – based
on combination of VPFM and LPFM has been developed.

3. Vector PFM
Electromechanical response of the surface to the applied
tip bias in general case is a vector having three indepen-
dent components (PRx, PRy, PRz). To obtain complete
information on materials properties, all three components
are required. The original VPFM approach allowed
only the measurement of PRz component. Lateral PFM
allows PRy component to be detected simultaneously (the
cantilever is oriented along the x-axis). Combined lateral
and vertical PFM imaging had been used by Eng et al. to
reconstruct surface crystallography in a barium titanate
crystal [23]. Rodriguez et al. have applied this approach
to 3D polarization reconstruction in micrometer-size
PZT capacitors [25]. In both cases, sequential acquisition
of two LPFM images at two orthogonal orientations of
the sample with respect to the cantilever, further referred
to as x-LPFM and y-LPFM imaging, has been accom-
plished in the samples with well-defined crystallographic
orientation. In general case of an arbitrarily oriented
sample, only semi-quantitative information on materials
properties can be obtained unless relative sensitivities of
LPFM and VPFM are carefully calibrated.

An example of 2D vector PFM image is illustrated in
Fig. 3, which shows VPFM and LPFM images of a stron-
tium bismuth tantalate (SBT) thin film (Fig. 3a and b,
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Figure 3 (a) Vertical and (b) lateral PFM images of the SBT thin film. (c) Vector representation of 2D PFM data; (d) Angle and (e) amplitude images
derived from image the 2D map in (c).

respectively). To represent vector PFM data, the VPFM
and LPFM images are normalized so that the intensity
changes between –1 and 1, i.e. vpr, lpr ∈ (–1, 1). Us-
ing commercial software [26] 2D vector data (vpr, lpr) is
converted to the amplitude/angle pair, A2D = Abs(vpr + I
lpr), θ2D = Arg(vpr + I lpr). In Fig. 3c, color corresponds
to the orientation, while intensity corresponds to the mag-
nitude. Notably, this vector PFM image shows that color
is virtually uniform inside most of the grains, suggesting
that they exist in a single domain state, while polarization
orientation changes between the grains. This information
can be represented in the scalar form by plotting sepa-
rately phase θ2D, and magnitude, A2D, as illustrated in
Fig. 3d and e, respectively.

To achieve the full potential of vector PFM, quantitative
interpretation of the electromechanical response data is
required. The units of PFM response are (nm/V), similar
to the dimensionality of piezoelectric constant tensor, dij.
In the uniform z-oriented electric field, response in z-
direction is given by the piezoelectric constant d33. In
LPFM, under similar conditions the signal is given by the
shear components of piezoelectric constant tensor, xPRl

= d35 and yPRl = d34, since components d31 and d32

result in axially symmetric deformation of material that
does not contribute to displacement at the center [27]. For
the non-uniform field similar to that below the SPM tip,
this approximation is no longer rigorous and the effective
piezocoefficient will be a complex function of mechanical
and electromechnical constants of material. Although the
exact analytical solutions are not available for these cases,
following the analogy with VPFM, the assumption xPRl

= d35 and yPRl = d34 are expected to provide a good first
approximation for the description of the LPFM data, even
though analytical solutions or numerical simulations are
required to prove this conjecture.

Note that this interpretation applies when the piezoelec-
tric tensor is given in the laboratory coordinate system.
However, it is conventional to represent the piezoelectric
constant tensor in the coordinate system related to the ori-
entation of crystallographic axis of the material, d0

i j . In this
case, the intrinsic material symmetry limits the number
of non-zero components and allows the material-specific
parameters to be tabulated. These coordinate systems are
related by three Euler rotation angles, φ, θ , and ψ . The
relationship between the dij tensor in the laboratory coor-
dinate system and the d0

i j tensor in the crystal coordinate
system is [28]:

dij = Aikdo
kl Nlj (7)

where the elements of the rotation matrices Nij and Aij as a
function of Euler angles are given in Ref. [28]. For exam-
ple, for a domain in tetragonal ferroelectric material with
polarization in the (010) direction oriented perpendicular
to the cantilever axis, the relationship between coordinate
systems is given by φ = 0, θ = π /2, ψ = 0 and from
Equation 7 vPR = 0, xPRl = d0

15 and yPRl = 0, consis-
tent with the early assumption of xPRl = d0

15 for in-plane
domains in tetragonal ferroelectrics [24].

To summarize, Equation 7 fully describes the relation-
ship between material properties and vector PFM data and
allows semi-quantitative assessment of d0

i j provided that
the crystallographic orientation of the sample is known.
Alternatively, if the elements of the d0

ij tensor are known
then reconstruction of local crystallographic orientation
from vector PFM data can be performed.

4. Electromechanics of ferroelectric switching in
PFM

Scanning force microscopy provides a unique opportunity
for controlling the ferroelectric properties at the nanoscale
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and direct studies of the domain structure evolution under
an external electric field, which cannot be matched by
previously available techniques. A conductive probing tip
can be used not only for domain visualization but also for
modification of the initial domain structure. Application
of a small dc voltage between the tip and bottom electrode
generates an electric field of several hundred kilovolts per
centimeter, which is higher than the coercive voltage of
most of ferroelectrics, thus inducing local polarization re-
versal. This approach was suggested for such applications
as ultrahigh density data storage [6, 7] and ferroelectric
lithography [8, 9]. These applications require thorough
understanding of both thermodynamics and kinetics of
the switching process as described in the following two
sections.

The driving force for the 180◦ polarization switching
process in ferroelectrics is change in the bulk free energy
density [29, 30]:

�gbulk = −�Pi Ei − �diµEi Xµ (8)

where Pi, Ei, Xµ, and diµ, are components of the polar-
ization, electric field, stress and piezoelectric constants
tensor, correspondingly, i = 1, 2, 3, and µ = 1, .., 6. The
first and second terms in Equation 8 describe ferroelectric
and ferroelectroelastic switching, respectively. For mate-
rials, such as LiNbO3 and lead zirconate-titanate (PZT),
the signs of the corresponding free energy terms are op-
posite and the polarities of the domains formed by fer-
roelectric and ferroelectroelastic switching are opposite,
thus providing an approach to distinguish these switching
mechanisms.

The free energy of the nucleating domain is

�G = �Gbulk + �Gwall + �Gdep (9)

where the first term is the change in bulk free
energy,�Gbulk = ∫

�gbulkdV , the second term is the
domain wall energy, and the third term is the depolar-
ization field energy. In the Landauer model of switch-
ing, the domain shape is approximated as a half ellipsoid
with the small and large axis equal to rd and ld, corre-
spondingly (Fig. 4a). The domain wall contribution to the
free energy in this geometry is �Gwall = brdld , where
b = σwall π

2/2 and σ wall is the direction-independent do-
main wall energy. The depolarization energy contribution
is �Gdep = cr4

d /ld , where

c = 4π P2
s

3ε11

⌊

ln

(
2ld

rd

√
ε11

ε33

)

− 1

⌋

(10)

has only a weak dependence on the domain geometry
[31].
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Figure 4 (a) Domain geometry during tip-induced switching. (b) Free
energy as a function of the lateral domain size. Dashed line - in a uniform
electric field; Solid line – in a tip-induced electric field.

In the uniform field case, the free energy surfaces as
a function of ld, rd, has a saddle point character and the
domain grows indefinitely once the critical size corre-
sponding to activation barrier for nucleation Ea is reached
(Fig. 4b). The critical domain size and activation en-
ergy for nucleation can be obtained from minimization
of Equation 10 as rc = 0.83 b/a, lc = 1.86 bc1/2 a−3/2 and
Ea = 0.518 b3c1/2 a−5/2, where a = 4π Ps E/3. For typi-
cal ferroelectric materials, such as BaTiO3 (σ = 7 mJ/m2,
Ps = 0.26 C/m2, ε11 = 2000, ε33 = 120 [32]), in the
uniform field E = 105 V/m the corresponding values are
Ea = 2.4 × 105 eV and lc = 16.4 µm, rc = 0.264 µm.
Thus, for relatively weak fields corresponding to experi-
mental coercive fields, homogeneous domain nucleation
is impossible, which explains why in typical ferroelectric
materials domain nucleation occurs at the surface or at the
interface defects.

The opposite is true for the tip-induced switching, when
the small radius of curvature of the tip results in large
(106–109 V/m) electric fields localized at the tip apex.
The corresponding domain free energy can be determined
from electroelastic field distribution generated by the PFM
tip as

�Gbulk =
∫

V
�gbulk(�r )dV

= 2π

∫ ld

0
dz

∫ r (z)

0
�gbulk(r, z) rdr (11)

where r (z) = rd

√
1 − z2

/
l2
d . An initial insight into the

PFM switching phenomena can be obtained using point
charge models that are applicable if domain sizes ld, rd

� R, a, where R is the tip radius and a is the con-
tact radius and provided that the singularity at the ori-
gin is weak enough to ensure convergence of the inte-
gral in Equation 11. For ferroelectric switching induced
by a point charge qs located on the surface, the inte-
gral in Equation 11 can be taken analytically: �Gbulk =
drdld/(ld + γ rd ), where d = 2Psqs/(ε0 + √

ε11ε33) and
γ = √

ε33/ε11. In this point charge approximation,
domain size and energy are re = 0.342d2/3(bc)−1/3,
le = 0.2d/b and Em = −0.205d5/3(bc)−1/3 [33, 34].
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The activation energy for domain nucleation in this ap-
proximation is zero, due to the infinite field at the origin.
This analysis predicts that domain shape in the switching
process follows the invariant relation r3

e /l2
e = b/c.

The applicability of the point charge approximation
to the thermodynamics of domain switching on the
large length scales is limited by the contribution of
the electrostatic fields produced by the conical part of
the tip, which decay much slower than that produced by
the point charge. At the smaller length scales compara-
ble to the tip radius of curvature, the thermodynamics of
switching process requires exact electroelastic field struc-
ture to be taken into account. In this case, it was shown
that domain nucleation requires certain threshold bias of
the order of 0.1–1 V, corresponding to non-zero activation
energy for nucleation (of the order of ∼kT) [29, 35].

In the last several years, a number of reports have be-
come available on the high-order ferroic switching in
PFM [30, 35]. Due to the rapid decay of correspond-
ing electroelastic fields, the use of Equation 11 in the
point charge/force approximation results in singularity in
the contact area, necessitating exact electroelastic field
structure to be taken into account. Using rigorous elec-
troelastic solutions, it was shown [35] that for higher or-
der ferroic switching (e.g. ferroelectroelastic), the domain
size is limited by the tip-sample contact area, thus allow-
ing precise control of domain size. Finally, the non-linear
effects could have severe impact in PFM and should be
taken into account at high frequencies [36].

5. PFM spectroscopy
One of the most important applications of PFM is local
piezoelectric spectroscopy, i.e., measurements of local
hysteresis loops at the ∼10 nm level [24, 37]. PFM
hysteresis loops readily provide information on local
electromechanical activity and coercive voltage variations
between dissimilar grains. Currently, there are two main
approaches to the hysteresis loop measurements in PFM
that differ by the mode of voltage application: either step
voltage or pulse voltage. Depending on the dielectric
properties of the ferroelectric sample and domain stability

one or another approach provides more reliable results
[38]. However, generally quantitative interpretation of
PFM spectroscopy presents a complex problem. As
has been discussed previously, a major challenge of
quantitative PFM characterization of ferroelectric thin
films stems from the inhomogeneous distribution of the
tip-generated field and random grain orientation [39, 40].
The vector PFM approach in conjunction with the local
switching experiments can be used to analyze the effect
of grain crystallographic orientation on the local hys-
teresis loop parameters [41]. Below, the inhomogeneous
distribution of the SPM tip-generated field has been
taken into account to quantify the piezoresponse signal of
individual grains using the step mode of hysteresis loop
measurement.

Fig. 5 shows surface topography along with the VPFM
and LPFM images of the strontium bismuth tantalate
(SBT) film [42]. Local piezoelectric hysteresis loop mea-
surements [21] show that grains that exhibit strong VPFM
contrast also have distinctive hysteresis loops (Fig. 6a), in-
dicative of a large out-of-plane polarization component.
On the other hand, the VPFM hysteresis loop for grain 3,
which exhibits gray contrast in VPFM, is linear, indicative
of non-ferroelectric nature of the grain or purely in-plane
polarization corresponding to (001) grain orientation [43].
The LPFM loop of the same grain, shown in Fig. 6b, ex-
hibits clear hysteresis behavior, which is consistent with
the in-plane orientation of the polarization vector.

To analyze the hysteresis loop shape in PFM, the ver-
tical surface displacement under the applied tip bias can
be calculated as [41, 44]:

− Ãpiezo =α

∫ ∞

0
d33 Ezdz =αd33

{∫ l

0
Ezdz −

∫ ∞

l
Ezdz

}

(12)
where l is the growing domain length. Integration yields
Apiezo = αd33{V(0) – 2V(l)}, where V(0) is the potential
on the surface and V(l) is the potential at the domain
boundary. It is shown in Ref. [18] that in the strong in-
dentation regime, for distance l from the center of the
contact area larger than contact radius a, the potential dis-
tribution inside the material can be approximated using

Figure 5 Surface topography (a), vertical (b), and lateral (c) PFM signal of SBT thin film. Z-scale in (a) is 20 nm. (Reprinted with permission from [41]).
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Figure 6 (a) VPFM and (b) LPFM piezoelectric hysteresis loops for grains in Fig. 5. For clarity, vertical loops are shown only for grains 1, 2, and 3.
(Reprinted with permission from [41]).

the point-charge model. In this case, assuming that in the
point-charge approximation the domain size is related to
the biasing voltage as l(Vdc) ∼ Vdc [33, 34], it can be
shown that the shape of the PFM hysteresis loop should
follow the functional form

PR = αd33{1 − η
/

Vdc} (13)

where PR is the piezoresponse amplitude, PR = Apiezo/Vac.
To compare the experimental PFM loop shape with
Equation 13, adjustment for the capacitive cantilever-
surface interaction is introduced by subtracting the lin-
ear loop for the grain 3 from the hysteresis loops for the
ferroelectric grains. A corrected hysteresis loop and a cor-
responding fit by Equation 13 are shown in Fig. 7a, illus-
trating excellent agreement of the experimental data with
Equation 13. Generally, however, care should be taken
while subtracting the linear contribution of the cantilever-
surface interaction as it might differ for differently ori-
ented grains. This is particularly important for materials
with high anisotropy of the dielectric constants, such as
barium titanate.

The same formalism has been extended to determine
the effect of grain orientation on local coercive voltage.
The longitudinal piezoelectric coefficient in SBT in the

[011] plane at the angle θ from the (010) axis can be
estimated as dzz(θ) ≈ d33 cos 3 θ . Similarly, the lateral
piezoresponse coefficient is dzx(θ) = d31 cos θ . Both verti-
cal and lateral responses decrease with the deviation from
the polar (010) direction. The relationship between the
PFM coercive bias and crystallographic orientation of the
grain can be estimated from the work of switching, which
is proportional to E · P = E P cos (θ), where E is electric
field and P polarization vector. Therefore, coercive bias
is expected to increase with deviation angle from polar
axis as Vcoer(0)/cos (θ), where Vcoer(0) is coercive bias for
the (010) grain. Comparison of the angular dependence
of piezoresponse signal and coercive bias suggests that
for the off-axis orientation of the grains the response
decreases and coercive bias increases, in agreement with
experimental results illustrated in Fig. 7b. In the limiting
case of the (001)-oriented grain in SBT piezoresponse and
a coercive field become zero and infinity, respectively.
It is worthwhile mentioning that establishing correlation
between local and macroscopic coercive voltages requires
statistical approach that involves local spectroscopy of a
number of grains as well as careful studies of switching
behavior of the macroscopic capacitor that incorporates
these grains - mission still to be accomplished.

Figure 7 (a) Corrected hysteresis loop and corresponding fit by Equation 13 for positive and negative tip biases. (b) Correlation between maximal switchable
polarization and coercive voltage V1 + V2 . (Reprinted with permission from [41]).
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6. Domain growth kinetics in PFM
Analysis in Section 4 describes the equilibrium domain
shape governed by the extent of electroelastic field created
by the tip. However, well outside of the tip-sample contact
area, the domain shape and size are controlled by the
kinetic effects as discussed below.

When an electric field is applied opposite to the polar-
ization direction of a single-domain ferroelectric capaci-
tor, the switching mechanism involves several steps: nu-
cleation of multiple domains, their forward growth, subse-
quent sideways expansion and coalescence [45]. In PFM,
switching involves nucleation of a single domain as was
discussed in the previous sections. High spatial resolution
of the PFM approach allows direct investigation of the
nanoscale domain growth. However, poor time resolution,
which is determined by the time required for image ac-
quisition (∼several minutes) makes in situ measurements
of domain dynamics during fast switching processes dif-
ficult. While PFM can be readily used to investigate slow
polarization relaxation processes with characteristic times
of the order of minutes and above, it is a challenge to
deduce the mechanism of domain transformation when
polarization reversal occurs in a matter of microseconds
and faster.

This problem is usually circumvented by studying the
domain structure dynamics in a quasi-static regime us-
ing step-by-step switching. This method has been previ-
ously used at the macroscopic level in classical switching
experiments on correlating the domain structure evolu-
tion and transient current in ferroelectric crystals [45]
and later was applied to thin films [6, 46]. In this ap-
proach, partial reversal of polarization is generated by
applying a voltage pulse shorter than the total switching
time with subsequent piezoresponse imaging of the re-
sulting domain pattern. By applying a sequence of voltage
pulses of successively increasing duration and acquiring
piezoresponse images after each pulse a consistent pic-
ture of time dependent behavior of domain structure can
be obtained providing information on the domain wall

velocity, its spatial anisotropy and its field dependence.
To avoid data misinterpretation due to spontaneous back-
switching between the pulses, stability of the produced
intermediate patterns should be checked by acquiring do-
main images at different time intervals after single pulse
application. To describe the sidewise expansion of the
domain it is necessary to take into account the field de-
pendence of the domain wall velocity and the spatial dis-
tribution of the electric field generated by the probing
tip.

Fig. 8 shows the PFM amplitude and phase images of
an array of 9 domains fabricated in a lithium niobate crys-
tal by applying negative 10 ms voltage pulses of various
magnitudes in the range from 20 to 70 V [47]. The PFM
contrast is the same across the 180◦ domain boundaries,
which appear as dark lines in the amplitude image, sug-
gesting that the fabricated domains extend from the top
to the bottom interface. Fig. 9 shows the time dependence
of the domain radius for three different pulse amplitudes,
which follows logarithmic law [48]. In addition, it has
been found that the domain size follows linear voltage de-
pendence [49]. This behavior suggests that the domains in
Fig. 8 represent different stages of the switching kinetic
process and do not correspond to the equilibrium state
domains [33]. Notably, results shown in Fig. 8 suggest
that the kinetics of the sidewise domain growth can be
described by a universal scaling curve g(t) = r(V, t)/V il-
lustrated in inset in Fig. 9. It is suggested that this universal
scaling behavior is directly related to the field dependence
of domain wall velocity and field distribution inside the
material. Here, we analyze the kinetics of the sidewise
domain growth using the classical activation model of the
wall motion in the tip-generated field assuming a weak
indentation regime [50].

To calculate the tip-generated field distribution, the tip
was modeled as a charged sphere with radius R at the
distance δ from the sample surface. The normal compo-
nent of this electric field at a section of the 180◦ domain
wall with the sample surface at a distance r from the tip

Figure 8 VPFM (a) amplitude and (b) phase images of ferroelectric domains fabricated in lithium niobate by 10 ms voltage pulses of various amplitudes.
(Reprinted with permission from [47]).
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Figure 9 Domain radius versus the pulse duration for various pulse magnitudes lithium niobate. Inset shows a scaling curve g(t) = r (V, t)/V calculated
using all data points from the main plot in Fig. 9. (Reprinted with permission from [47]).

is calculated using an expression for the electric potential
from Mele [51]:

E(r ) = Ct Vt

2πε0
√

εcεa + 1

√
εa

εc

R + δ

((R + δ)2 + r2)3/2
(14)

where Ct and Vt are the tip capacitance and bias, respec-
tively, and εa and εc are the dielectric constants along
the non-polar and polar axes of the sample, respectively.
In the present study, we used the following values: R =
50 nm, δ = 1 nm, εa = 85, εc = 30. The tip capacitance
was calculated to be 1.6 × 10−17 F [47]. The set of data in
Fig. 9 has been fitted using the following expression for
the time dependence of the domain radius assuming an
exponential field dependence of the wall velocity [52]:

t =
∫

dr

v(r )
=

∫
dr

e−α/E(r+r0)
(15)

where v (r) is a local wall velocity and α is the activa-
tion field. The meaning of the fitting parameter r0 can
be understood as follows. Underneath the probing tip,
the generated field is much larger than the local coercive
field and the domain growth develops as a nonactivated
process. The spatial inhomogeneity of the tip-generated
field results in a transition from the nonactivated to the
activated process. Therefore, r0 can be considered as the
domain radius at which the activation type of the wall mo-
tion begins. The r0 value was found to be 17 nm for the
applied voltage of 20 V and 110 nm for the 100 V volt-
age. The activation energy was found to decrease with an

increase in the applied voltage from ∼2×103 kV/cm for
20 V to ∼50 kV/cm for 100 V. It should be noted that
a strong decrease of the external field with the distance
from the tip as well as non-local tip effect might result in
a different mechanism of domain wall motion that may
explain a less adequate fitting of r(t) for large (r > 1.5 µm)
domains in Fig. 9.

7. Conclusion
Rapid development of ferroelectric-based devices gen-
erated a strong need for extensive investigation of the
nanoscale properties of ferroelectric materials. Applica-
tion of piezoresponse force microscopy to ferroelectrics
opened new possibilities not only for their high-resolution
imaging of domain structures, but also for quantitative
characterization and control of ferroelectric properties
at the nanoscale. Clearly, future will evidence broad
application of this technique for ferroelectrics, as well as
for more broad class of piezoelectric and electrostrictive
materials. It is also expected that PFM will find wide
application in studying the electromechanical coupling
in biological materials that will open new horizons for
understanding the mechanisms that govern growth and
regeneration of living tissues.
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